8 марта 2017 года Google объявил о приобретении копманнии [1]. Время от времени здесь публикуются статьи с упоминанием Kaggle. Это крупнейшая международная платформа соревнований по Data Science. В организации соревнований участвуют крупные и не очень компании, а многие задачи решают реальные проблемы медицины, ИИ, разработки и т. Например, модель Random Forest из библиотеки scikit-learn — у нас есть kaggle что это об этом хорошая статья.
Платформа позволяет не только улучшить свои навыки, но и получить признание в сообществе профессионалов. Kaggle Это платформа, которая предоставляет онлайн-сообщество для энтузиастов науки о данных и машинного обучения (ML). Это лучший инструмент обучения для начинающих и профессионалов, с реалистичными практическими задачами для оттачивания ваших навыков работы с данными.
Было приятно видеть, как ребята учатся решать всё более сложные задачи и получают удовольствие от этого процесса. Уже в аспирантуре я узнал, что это называется зоной ближайшего развития. Как начинающему специалисту в области Data Science набраться опыта, где прокачать скилы и к кому обратиться за помощью, если собственных знаний не хватает? Сервис — это и социальная сеть, и площадка для организации соревнований в области исследования данных. Высокий рейтинг на платформе помогает легко устанавливать контакты со многими известными участниками Kaggle, у вас появляется огромное количество друзей по всему миру.
Сами по себе id вопросов — это служебная информация, однако в соревнованиях по машинному обучению id зачастую неявно содержат полезную информацию. Например, если мы предположим, что более старые вопросы имеют меньший id, а более новые — больший, то мы можем посмотреть на зависимость доли дубликатов от времени. Помимо работы над проектами клиентов, data science команда InData Labs часто принимает участие в различных соревнованиях. Об успешном опыте участия в соревновании на Kaggle рассказал data scientist компании Артём Фаразей.
Например, вы можете захотеть применить настраиваемую палитру для всех графиков, использовать более крупные шрифты для меток, изменить расположение легенды, использовать фиксированные размеры фигур и т. Сначала найдите пропорции, разделив количество отсутствующих значений на длину DataFrame. Ну, еще раз — задача данного этапа наработать базу решений, методов и подходов. Чтобы в следующем соревновании вы не тратили время, а сразу сказали — ага, тут может зайти mean target encoding, и кстати, у меня и правильный код для этого через фолды в фолдах есть.
Тогда параметризованные тесты в Pytest — именно то, что вам нужно. В этой статье мы разберёмся, как с помощью параметризации можно существенно ускорить и упростить тестирование вашего приложения. Что это, зачем он вам и как начать, все это вы узнаете в ролике. В России при трудоустройстве в любую ИТ-компанию по ML и DS направлениям рейтинг Kaggle будет несомненным плюсом. Если вас собеседует опытный специалист, будьте уверены, он по достоинству оценит ваши навыки, полученные на Kaggle. На конференции можно было вживую увидеть выступление Сундара Пичаи или, например, лично познакомиться с Винтоном Серфом, вице-президентом компании Google, одним из создателей интернета, участником группы DARPA.
Это не означает, что другие примеры кода автоматически плохие, но есть вероятность, что чем больше активности, тем точнее код. На этой стадии у начинающего дата-сайентиста обычно уже есть свои методы работы с данными и прогнозирующие модели — поэтому еще раз изучите «ядра» других пользователей. Можно задать коллегам вопрос, начать дискуссию или просто дополнить свои наработки. Выберите язык программирования — например, Python или R — и изучить его основы. Затем перейти к Kaggle Learn, чтобы закрепить знания по выбранному языку программирования, начать погружение в машинное обучение и познакомиться с методами визуализации данных. Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, “войти” в DS).
Помнится тогда заходил ансамбль через scipy.optimize, а кстати у меня и код уже готов. Первым четырем пунктам из этого списка не учат нигде (поправьте меня, если появились такие курсы — запишусь не раздумывая), тут только перенимать опыт коллег, работающих в этой отрасли. А вот последний пункт — начиная с выбора модели и далее, можно и нужно прокачивать в соревнованиях. Во время соревнования эти фичи окрестили «магическими», так как они были очень мощными, и для многих было неожиданно, что можно извлечь информацию не только из текста. Организаторам соревнования также не было понятно, будут ли подобные фичи полезны в реальной жизни. К тому же, некоторые NLP модели (например TF-IDF) неявно используют частоту вопроса, а значит они могут давать прирост качества только потому, что эксплуатируют особенность датасета.
Каждый участник платформы имеет возможность для анализа данных Kaggle и изучения проектов других пользователей. Это способствует совершенствованию собственных знаний и навыков и их отработке на практике. На ресурсе Kaggle зарегистрировано более 5 миллионов пользователей.
Первые три вопроса были предварительно помечены Quora как дубликаты, а пары 4-6 считались уникальными. Как видно из примеров, словарное наполнение вопросов-дубликатов может совсем не совпадать, а вопросы, которые не являются дубликатами, могут отличаться всего одним словом. Это одна из главных особенностей датасета, которая делает задачу такой сложной для технологий обработки естественного языка (NLP). Недавно мы показали хороший результат в Quora Question Pairs Challenge на Kaggle. Соревнование примечательно большим количеством неожиданных открытий и оживлённых дискуссий среди участников. Поэтому я решил детально описать особенности именно этого соревнования и поделиться рецептом победы.
И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Рассмотренные нами графовые фичи — далеко не единственный способ использовать особенности предоставленных данных. В погоне за первым местом участники придумали большое количество более сложных графических фич, которые содержат в себе еще больше информации о структуре датасета. Как мы видим на графике, со временем доля дубликатов снижается.
Kaggle используют и начинающие, и опытные дата-сайентисты со всего мира. Есть пользовательский рейтинг — очки в нем можно заработать за решение задач по машинному обучению, обсуждение на форуме, публикацию своего кода и наборов данных. Многие компании при найме обращают внимание на место соискателя в рейтинге Kaggle. Эти соревнования привлекают на платформу экспертов и профессионалов со всего мира. В результате на каждом соревновании появляется множество высококачественных блокнотов и скриптов, а также огромное количество опенсорсных наборов данных, которые предоставляет Kaggle.
А ещё по ним написано множество подробных руководств — это бесценно для начинающего дата-сайентиста. Кроме того, вы можете работать с другими инженерами данных, чтобы решать мировые проблемы, составлять свое резюме и получать высокооплачиваемую работу благодаря постоянному развитию сообщества. Демонстрация вашей работы также помогает вам заявить о себе как о эксперте в своей области, что имеет решающее значение для поиска работы.
Сейчас на Kaggle можно проходить курсы по AI, пользоваться облачными ресурсами для решения задач, общаться со специалистами по всему миру, искать работу и, конечно же, участвовать в соревнованиях. В 2017 году Google купила платформу Kaggle, усилив позиции в сообществе исследователей по искусственному интеллекту, а также в борьбе за лучших специалистов на рынке. Для тех, кто только начинает свой путь в анализе данных и машинном обучении, ключевым этапом может стать ознакомление с популярными курсами, предлагаемыми на платформе Kaggle. Kaggle — это мощная платформа для анализа данных и машинного обучения, которая предоставляет пользователям доступ к огромным наборам данных, инструментам и активному сообществу. Независимо от вашего уровня подготовки, Kaggle поможет вам развивать свои навыки и достигать новых высот в области анализа данных и машинного обучения. Платформа предоставляет множество возможностей для обучения, экспериментов и профессионального роста, что делает её незаменимым инструментом для всех, кто интересуется анализом данных и машинным обучением.
IT курсы онлайн от лучших специалистов в своей отросли https://deveducation.com/ here.
Leave a comments